一种基于LS-SVM的CDMA信号接收机自适应核方法An adaptive kernel method based on LS-SVM for CDMA signal receiver
范小岗;李雷;陈潇;郭会平;
摘要(Abstract):
给出了一种基于最小二乘支持向量机(LS-SVM)的码分多址(CDMA)系统信号接收机非线性自适应核算法。LS-SVM使用均方误差原则,优点是能应用于自适应在线的情况,基于LS-SVM的接收检测器复杂度适中,能够实现非线性分类,并能够自适应执行,而且仅仅只需要从用户那里得到较少的训练数据序列。
关键词(KeyWords): 最小二乘支持向量机;码分多址信号接收;自适应算法
基金项目(Foundation): 国家自然科学基金项目(10371106,10471114);; 江苏省高校自然科学基金项目(04KJB110097)
作者(Authors): 范小岗;李雷;陈潇;郭会平;
DOI: 10.13682/j.issn.2095-6533.2007.03.016
参考文献(References):
- [1]Yi Lin.Support Vector Machines and The Bayes Rule inClassification.Technical Report No.1014,University ofWisconsin,Madson,1999.
- [2]K W Lau,Q H Wu.Online Training of Support VectorClassifier[J].Patten Recognition,2003,36:1913-1920..
- [3]X.Gong and A.Kuh.Support Vector Machine for Mul-tiuser Detection.33rd A silomar conference on signals,system,and computers,Monterey CA,Vol.1.pp 685-689,Nov.,1999.
- [4]LEI LI,YU WANG,XING-HUI WANG.NATURALGRADIENT ALGORITHM AND ITS APPLICATIONSIN BSS.Proceedings of the Fifth International confer-ence on Machine Learning and Cybernetics.P.2985-2989.August 2006.
- [5]FEI TANG,LEI LI,TAO LU.APPLICATION RE-SEARCH OF SUPPORT VECTOR MACHINE INCOMMUNICATION.Proceedings of the Fifth Interna-tional conference on Machine Learning and Cybernetics.P.2468-2473.August 2006.
- [6]H.Kuhn and A.Tucker.Nonliner programming.InProceedings of the 2nd Berkeley System on MarhematicalStatistics and Probabilistics,pages 481-492.Universityof California Press,1951.
- [7]J.Platt.Sequential minimal optimization:a fast algo-rithm for training support vector machine.Technical Re-port MSR-TR-98-14,Microsoft Research,1998.
- [8]T.Poggio and F.Girosi.A Sparse Representation forFunction Approximation.Neural Computation,Vol.10#6,1445-1454,Aug.1998.
- [9]B.Aazhang,B.P.Paris,and G.C.Orsak,”Neural net-work for multiuser detection in code-division multiple-access communications,”IEEE Trans.Commun.Vol.40.pp.1212-1222.1992.
- [10]J.Suykens,L.Lukas,and J.Vandewalle.Leastsquares support vector machine classifiers.Neural Pro-cessing Letters,Vol.9,#3,293-300,Jun.1999.
- [11]J.Suykens,L.Lukas,P.Van Dooren,B.DeMoor,andJ.Vandewalle.Least squares support vector machineclassifiers:a large scale algorithm.Proc.of ECCTD’99,Stresa,Italy,839-842,Step.1999.
- [12]J.Suykens,L.Lukas,and J.Vandewalle.Spare approxi-mation using least squares support vector machine.ISCS2000,Geneva,Switzerland,Vol.II,757-760,May,2000.
- [13]V.Vapnik.Statistical learning theory.John Wiley,NewYork City,NY 1998.
- [14]K.Muller,S.Mika,G.Ratsch,K.Tsuda,B.Scholkopf,”An Introduction to Kernel Base Learning Algorithrns”,IEEE Trans.Neural Networks,Vol.12,pp.181-202,No.2,Mar.2001.
- [15]S.Chen,A.K.Sarningan,L.Hanzo,”Support VectorMachine Multiuse Receiver for DS-CDMA Signals inMultipath Channels”,IEEE Trans.Neural Networks,Vol.12,No.3,May 2001.