具有时变约束的机械臂系统自适应控制器设计Adaptive control design for robot manipulators system with time-varying constraints
范永青,郝美荣
摘要(Abstract):
对具有时变约束的不确定多自由度机械臂动态系统问题,设计出一种基于障碍李雅普诺夫函数(Barrier Lyapunov Function, BLF)的自适应径向基函数神经网络切换控制器。在传统的径向基函数神经网络(Radial Basis Function Neural Network, RBFNN)的基础上设计出一种带有时变参数的万能逼近器逼近机械臂系统中的不确定性,引入BLF进行稳定性分析,并设计一个滑模面使未知机械臂系统的状态在超出预先设计的定义域时,能够通过自适应律进入RBFNN的万能逼近域。仿真结果表明,该控制器可以保证系统在时变输出约束的条件下具有良好的跟踪性能,与其他的RBFNN控制器相比,该控制器的逼近精度可以自动在线更新,并将半全局稳定性扩展到全局稳定性。
关键词(KeyWords): 机械臂;径向基函数神经网络系统;自适应控制;时变约束;全局一致最终有界
基金项目(Foundation): 国家自然科学基金项目(61903298,51875457,62003262);; 陕西省留学人员科技活动择优项目(35)
作者(Author): 范永青,郝美荣
DOI: 10.13682/j.issn.2095-6533.2022.01.014
参考文献(References):
- [1] LUAN Y Z,GUO J M,LIU H Y.Structural dynamics simulation analysis of industrial robot arm based on Kane method[J].Journal of Physics:Conference Series,2021,1871(1):1-6.
- [2] IZZAT A,DIMITRIOS P,QUDUS K F,et al.Adaptive robust controller design-based RBF neural network for aerial robot arm model[J].Electronics,2021,10(7):831-831.
- [3] ZHAO G Y.Design and application of moxibustion mechanical arm[J].Acupuncture Research,2020,45(11):936-940.
- [4] GUO B.Multi-degree-of-freedom robot arm motion simulation based on MATLAB[J].Journal of Engineering Mechanics and Machinery,2021,6(1):42-69.
- [5] YANG C G,WANG X Y,CHENG L,et al.Neural-learning-based telerobot control with guaranteed performance[J].IEEE Transactions on Cybernetics,2017,47(10):3151-3156.
- [6] 王文庆,马一鸣.一种基于模糊逼近的双容水箱鲁棒控制器设计[J].西安邮电大学学报,2018,23(3):97-103.WANG W Q,MA Y M.A design of coupled tank robust controller based on fuzzy approximation[J].Journal of Xi'an University of Posts and Telecommunications,2018,23(3):97-103.(in Chinese)
- [7] MILLER III W T,GLANZ F H,KRAFT III L G.Application of a general learning algorithm to the control of robotic manipulators[J].The International Journal of Robotics Research,1987,6(2):84-98.
- [8] MIYAMOTO H,KAWATO M,SETOYAMA T,et al.Feedback-error-learning neural network for trajectory control of a robotic manipulator[J].Neural networks,1988,1(3):251-265.
- [9] OZAKI T,SUZUKI T,FURUHASHI T,et al.Trajectory control of robotic manipulators using neural networks[J].IEEE Transactions on Industrial Electronics,1991,38(3):195-202.
- [10] HUANG J T.Global tracking control of strict-feedback systems using neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2012,33(11):1717-1722.
- [11] YANG C G,JIANG Y M,LI Z J,et al.Neural control of bimanual robots with guaranteed global stability and motion precision[J].IEEE Transactions on Industrial Informatics,2017,13(3):1164-1167.
- [12] ACOSTA L.A robotic system based on neural network controllers[J].Artificial Intelligence in Engineering,1999,13(4):393-397.
- [13] TANG L,LI D G.Time-varying barrier Lyapunov function based adaptive neural controller design for nonlinear Pure-feedback systems with unknown hysteresis[J].International Journal of Control,Automation and Systems,2019,17(7):1645-1649.
- [14] LIU Y J,TONG S C.Barrier Lyapunov functions for nussbaum gain adaptive control of full state constrained nonlinear systems[J].Automatica,2017,76:145-149.
- [15] LI Y M,LI T S,JING X J.Indirect adaptive fuzzy control for input and output constrained nonlinear systems using a barrier Lyapunov function[J].International Journal of Adaptive Control and Signal Processing,2014,28(2):184-199.
- [16] GUO Q,LI S,JIANG D.A lower extremity exoskeleton:Human-machine coupled modeling,robust control design,simulation,and Overload-carrying experiment[J].Mathematical Problems in Engineering,2015,(16):905761-905776.
- [17] LEE S W,KIM H O,YOO S J.Adaptive neural network tracking of a class of switched nonlinear systems with time-varying output constraints[J].International Journal of Control,Automation and Systems,2017,15(3) :1425-1433.
- [18] METIN T,SERDAR K.Dexterous workspace optimization of an asymmetric six-degree of freedom Stewart-Gough platform type manipulator[J].Robotics and Autonomous Systems,2013,61(12):1516-1528.
- [19] ZHAO Z,HE W,GE S S.Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints[J].IEEE Transactions on Control Systems Technology,2014,22(4):1536-1543.
- [20] LIU Y J,TONG S,CHEN CP,et al.Adaptive NN control using integral barrier Lyapunov functionals for uncertain nonlinear block-triangular constraint systems[J].IEEE Trans Cybern,2017,47(11):3747-3757.
- [21] LIU Y J,LU S M,TONG S C.Neural network controller design for an uncertain robot with time-varying output constraint[J].IEEE Transactions on Systems,Man,and Cybernetics,2017,47(8):2061-2064.
- [22] SU Q,WAN M.Adaptive neural dynamic surface output feedback control for nonlinear full states constrained systems[J].IEEE Access,2020,8:131590-131600.
- [23] FAN Y Q,WANG W Q,LIU Y,et al.Fuzzy adaptive switching control for an uncertain robot manipulators with time-varying output constraint[EB/OL].[2021-06-21].https://www.hindawi.com/journals/complexity/2018/8275296/.
- [24] ZHANG J,LIU B,JIANG Z,et al.The application of sliding mode control with improved approaching law in manipulator control[C]//Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA).Wuhan:IEEE,2018:807-812.