多耦合相位振子的部分测度同步及相同步Partial measure synchronization and phase synchronization in multi-coupling phase oscillators
田静,刘婷,惠小强
摘要(Abstract):
对耦合哈密顿系统中两耦合相位振子的HZ模型进行改进,给出多耦合相位振子改进模型,并分析改进模型的集体动力学行为。利用标准四阶龙格-库塔法求解正则方程,将其数值结果投影到子系统运动的相平面,以获取系统各运动轨道在相平面上的演化。利用数值模拟方法,分别计算出系统振子的能量、平均能量、序参量和最大李雅普诺夫指数。利用改进后的模型可以验证:耦合哈密顿系统存在部分测度同步现象,并在同步转变点附近存在分界线混沌现象;在非同步态向测度同步态转变时,系统可达完全相同步,但无法达到完全测度同步。
关键词(KeyWords): 耦合哈密顿系统;部分测度同步;相同步
基金项目(Foundation): 国家自然科学基金资助项目(11104217,11402199);; 陕西省自然科学基金资助项目(2014JQ1022);; 陕西省教育厅科学研究计划资助项目(2014JK1676)
作者(Author): 田静,刘婷,惠小强
DOI: 10.13682/j.issn.2095-6533.2016.02.013
参考文献(References):
- [1]BENNETT A M,SCHATZ M F,ROCKWOOD H.Huygens’s clocks[J].Proceedings Mathematical,Physical and Engineering Sciences,2001,458(2019):563-579.
- [2]LLOYD A L.The coupled logistic map:a simple model for the effects of spatial heterogeneity on population dynamics[J].Journal of Theoretical Biology,1995,173(3):217-230.
- [3]HANSEL D,SOMPOLINSKY H.Synchronization and computation in a chaotic neural network[J].Physical Review Letters,1992,68(5):718.
- [4]HAMPTON A,ZANETTED H.Measure synchronization in coupled Hamiltonian systems[J].Physical review letters,1999,83(11):2179.
- [5]CHEN S Y,WANG G R,CHEN S G.Measure Synchronization of High-Cycle Islets in Coupled Hamiltonian Systems[J].Chinese Physics Letters,2004,21(11):2128-2122.
- [6]VINCENT U.Measure synchronization in coupled Duffing Hamiltonian systems[J].New Journal of Physics,2005,7(1):209-212.
- [7]YANG Y,WANG C L,JIANG H,et al.Synchronization in the Frenkel-Kontorova type system[J].Physica Scripta,2012,86(1):015003.DOI:10.1088/0031-8949/86/01/015003.
- [8]TIAN J,QIU H B,WANG G F,et al.Measure synchronization in a two-species bosonic Josephson junction[J].Physical Review E,2013,88(3):032906.
- [9]TIAN J,QIU H B,CHEN Y.Nonlocal measure synchronization in coupled bosonic Josephson junctions[J]Chinese Physics Letters,2010,27(7):70501-70504.DOI:10.1088/0256-307x/2 7/7/O70501.
- [10]田静,邱海波,陈勇.耦合哈密顿系统中测度同步发生机理的研究[J].物理学报,2010,59(6):3763-3768.
- [11]田静.耦合Morse振子中测度同步的研究[J].兰州大学学报:自然科学版,2013(4):19-23.
- [12]CHEN Z C,LI B,QIU H B,et al.Collective dynamics in a non-dissipative two-coupled pendulum system[J].Chinese Physics B,2014,23(5):050506.DOI:10.1088/1674-1056/23/5/050506.
- [13]LI B,CHEN Z C,QIU H B,et al.Critical phenomenon of two coupled phase oscillators[J].The Journal of China University of Posts and Telecommunications,2013,20(2):121-127.DOI:10.1016/S1005-8885(13)60208-3.
- [14]WANG X G,LI H H,HU K,et al.Partial measure synchronization in Hamiltonian systems[J].International Journal of Bifurcation and Chaos,2002,12(5):1141-1148.
- [15]陈绍英,许海波,王光瑞,等.耦合哈密顿系统中测度同步的研究[J].物理学报,2005,53(12):4098-4110.
- [16]陈绍英,顾思齐,孔祥宇.耦合Duffing哈密顿系统的测度同步及相同步[J].河北师范大学学报:自然科学版,2011,35(1):37-44.