基于MDP的协作认知边缘计算网络资源分配方案MDP based resource allocation scheme for cooperative cognitive mobile edge computing networks
刘伯阳,马杰,白静,万奕尧
摘要(Abstract):
为了缓解移动边缘计算网络中用户设备续航有限、频谱稀缺的问题,提出一种可无线充能的认知边缘计算网络中的资源优化方案。主用户可以对次用户进行无线充能与协作中继,尽快完成自身数据传输后使信道空闲,次用户接入信道后进行边缘计算。利用马尔科夫决策过程(Markov Decision Proces, MDP)对次用户的能量收集时间长度、卸载能耗和操作模式等进行联合优化设计,最大化次用户能获得的长期期望计算量。仿真结果表明,所提方案能够提升系统频谱效率,并且所提方案获得的长期期望计算量就短期优化方案而言具有显著提升。
关键词(KeyWords): 认知无线电;边缘计算;强化学习;马尔科夫决策过程
基金项目(Foundation): 国家自然科学基金项目(61701399);; 陕西省自然科学基础研究计划项目(2020JQ-851);; 陕西省教育厅专项科研计划项目(19JK0796);; 陕西省普通高校青年杰出人才支持计划项目
作者(Author): 刘伯阳,马杰,白静,万奕尧
DOI: 10.13682/j.issn.2095-6533.2022.01.004
参考文献(References):
- [1] TRAN T X,POMPILI D.Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J].IEEE Transactions on Vehicular Technology,2017,68(1):856-868.
- [2] HAYKIN S.Cognitive radio:Brain-empowered wireless communications[J].IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.
- [3] SUDEVALAYAM S,KULKARNI P.Energy harvesting sensor nodes:Survey and implications[J].IEEE Communications Surveys & Tutorials,2011,13(3):443-461.
- [4] BI S Z,ZHANG Y J.Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading[J].IEEE Transactions on Wireless Communications,2017(99):4177-4190.
- [5] WANG F,XU J,WANG X,et al.Joint offloading and computing optimization in wireless powered mobile-edge computing systems[J].IEEE Transactions on Wireless Communications,2017(99):1-5.
- [6] ZHOU F,WU Y,HU R Q,et al.Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems[J].IEEE Journal on Selected Areas in Communications,2018,36(9):1927-1941.
- [7] JIA F,ZHANG H,JI H,et al.Distributed resource allocation and computation offloading scheme for cognitive mobile edge computing networks with NOMA[C]//Proceedings of the 2018 IEEE/CIC International Conference on Communications in China(ICCC).Beijing:IEEE,2019:553-557.
- [8] SI P,LIANG H,WU W,et al.Joint resource management in cognitive radio and edge computing based industrial wireless networks[C]//Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference.Singapore:IEEE,2017:1-6.
- [9] LIU B,WANG J,MA S,et al.Energy-efficient cooperation in mobile edge computing-enabled cognitive radio networks[J].IEEE Access,2019,7:45382-45394.
- [10] LIU B,LI W,MA Y,et al.Wireless powered cognitive-based mobile edge computing with imperfect spectrum sensing[J].IEEE Access,2019,7:80431-80442.
- [11] ZHAO Q,LANG T,SWAMI A,et al.Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks:A POMDP framework[J].IEEE J.select.areas Communication,2007,25(3):589-600.
- [12] JEYA P J,KALAMKAR S S,BANERJEE A.Energy harvesting cognitive radio with channel-aware sensing strategy[J].IEEE Communications Letters,2014,18(7):1171-1174.
- [13] SULTAN A.Sensing and transmit energy optimization for an energy harvesting cognitive radio[J].IEEE Wireless Communication Letters,2012,1(5):500-503.
- [14] PARK S,HONG D.Optimal spectrum access for energy harvesting cognitive radio networks[J].IEEE Transactions on Wireless Communications,2013,12(12):6166-6179.
- [15] LIU B,WANG J,MA S,et al.Energy-efficient cooperation in mobile edge computing-enabled cognitive radio networks[J].IEEE Access,2019,7:45382-45394.
- [16] BOYD S,VANDENBERGHE L.Convex optimization[J].IEEE Transactions on Automatic Control,2006,51(11):1859-1859.