西安邮电大学学报

2020, v.25;No.147(06) 82-86

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

一种改进Faster RCNN的工件检测算法
Improved faster RCNN workpiece detection algorithm

周有;郭志浩;

摘要(Abstract):

针对在工业自动化生产过程中,光线不佳,工件尺寸较小等外在因素导致的多种工件检测精度不高以及特征提取困难的问题,提出一种改进更快速区域卷积网络(faster region with convolution neural networks,Faster RCNN)的工件检测算法。在原有网络基础上,结合自动色彩均衡算法增加图像预处理模块,改善光照不均匀问题,获得高质量图像。此外,通过增加锚点个数并修改其尺寸优化网络模型,提高网络的拟合能力。实验结果表明,该算法对多种工件的平均检测精度提高了3.6%,符合工业自动化场景要求。

关键词(KeyWords): 机器视觉;更快速区域卷积网络;自动色彩均衡算法;深度学习;工件检测

Abstract:

Keywords:

基金项目(Foundation): 陕西省重点研发计划项目(2019GY-061)

作者(Author): 周有;郭志浩;

Email:

DOI: 10.13682/j.issn.2095-6533.2020.06.011

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享