| 115 | 0 | 1370 |
| 下载次数 | 被引频次 | 阅读次数 |
针对随机气流和无人机(Unmanned Aerial Vehicles, UAV)机体振动引起的抖动影响UAV安全通信性能的问题,提出一种基于有源可重构智能表面(Reconfigurable Intelligence Surface, RIS)的辅助抖动UAV空地安全通信方案。该方案采用泰勒展开的线性近似方法表征仰角和方位角变化所产生的信道误差,在用户保密速率约束下,优化UAV机载基站的预编码矩阵和有源RIS的反射系数,以最小化机载基站的发射功率。将对应的优化问题分解为发射端预编码矩阵和有源RIS反射系数优化两个子问题,并通过交替优化方法求解。仿真结果表明,所提方案可以使UAV机载基站的发射功率在UAV抖动量为0.02的情况下降低10倍,能够在UAV抖动情况下保障用户安全通信速率。
Abstract:For the problem of the impact of random airflow and unmanned aerial vehicle(UAV) body vibration on UAV safety communication performance, an auxiliary shaking UAV air-to-ground safety communication scheme based on active reconfigurable intelligence surface(RIS) is proposed. This scheme uses the Taylor expansion linear approximation method to characterize the channel errors caused by changes in elevation and azimuth angles. Under the constraint of user secrecy rate, the precoding matrix of the UAV airborne base station and the reflection coefficient of the active RIS are optimized to minimize the transmission power of the airborne base station. The corresponding optimization problem is decomposed into two sub problems: the precoding matrix at the transmitting end and the optimization of the active RIS reflection coefficient, which are solved through alternating optimization methods. Simulation results show that the proposed scheme can ensure the safe communication rate of users in UAV under 0.02 shaking conditions, and reduce the transmission power of UAV airborne base stations by 10 times under small UAV jittering.
[1] LONG R Z,LIANG Y C,PEI Y Y,et al.Active reconfigurable intelligent surface-aided wireless communications[J].IEEE Transactions on Wireless Communications,2021,20(8):4962-4975.
[2] 谈玲,许海,刘玉风,等.基于多无人机的空中计算网络资源分配算法[J].电子学报,2023,51(11):3037-3078.TAN L,XU H,LIU Y F,et al.Resource allocation algorithm of aircomp network based on multiple UAVs[J].Acta Electronica Sinica,2023,51(11):3037-3078.(in Chinese)
[3] XU D F,YU X H,KWAN NG D W,et al.Resource allocation for active IRS-assisted multiuser communication systems[C]//2021 55th Asilomar Conference on Signals,Systems,and Computers.Pacific Grove:IEEE,2021:113-119.
[4] LONG R Z,LIANG Y C,PEI Y Y,et al.Active intelligent reflecting surface for SIMO communications[C]//Globecom 2020-2020 IEEE Global Communications Conference.Taipei:IEEE,2020:1-6.
[5] YOU C S,ZHANG R.Wireless communication aided by intelligent reflecting surface:Active or passive [J].IEEE Wireless Communications Letters,2021,10(12):2659-2663.
[6] DABIRI M T,REZAEE M,YAZDANIAN V,et al.3D channel characterization and performance analysis of UAV-assisted millimeter wave links[J].IEEE Transactions on Wireless Communications,2021,20(1):110-125.
[7] LI S X,DUO B,DI RENZO M,et al.Robust secure UAV communications with the aid of reconfigurable intelligent surfaces[J].IEEE Transactions on Wireless Communications,2021,20(10):6402-6417.
[8] XU D F,SUN Y,NG D W K,et al.Multiuser MISO UAV communications in uncertain environments with no-fly zones:Robust trajectory and resource allocation design[J].IEEE Transactions on Communications,2020,68(5):3153-3172.
[9] YANG L,MENG F X,ZHANG J Y,et al.On the performance of RIS-assisted dual-hop UAV communication systems[J].IEEE Transactions on Vehicular Technology,2020,69(9):10385-10390.
[10] DONG R Z,WANG B H,CAO K R.Deep learning driven 3D robust beamforming for secure communication of UAV systems[J].IEEE Wireless Communications Letters,2021,10(8):1643-1647.
[11] ADAM A B M,WAN X Y,ELHASSAN M A M,et al.Intelligent and robust UAV-aided multiuser RIS communication technique with jittering UAV and imperfect hardware constraints[J].IEEE Transactions on Vehicular Technology,2023,72(8):10737-10753.
[12] 夏荣盛,许计才,卜春磊,等.输入时滞和外部干扰下的QUAV鲁棒最优飞行控制[J].西安工业大学学报,2024,44(2):127-136.XIA R S,XU J C,BU C L,et al.Robust optimal flight control for QUAV with input delay and external disturbance[J].Journal of Xi’an Technological University,2024,44(2):127-136.(in Chinese)
[13] ZHOU Y F,ZHOU F H,ZHOU H L,et al.Robust trajectory and transmit power optimization for secure UAV-enabled cognitive radio networks[J].IEEE Transactions on Communications,2020,68(7):4022-4034.
[14] AHMED B,POTA H R.Flight control of a rotary wing UAV using adaptive backstepping[C]//2009 IEEE International Conference on Control and Automation.Christchurch:IEEE,2009:1780-1785.
[15] WU Q Q,ZHANG R.Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J].IEEE Transactions on Wireless Communications,2019,18(11):5394-5409.
[16] GUO K F,AN K.On the performance of RIS-assisted integrated satellite-UAV-terrestrial networks with hardware impairments and interference[J].IEEE Wireless Communications Letters,2022,11(1):131-135.
[17] ZHOU X B,WU Q Q,YAN S H,et al.UAV-enabled secure communications:Joint trajectory and transmit power optimization[J].IEEE Transactions on Vehicular Technology,2019,68(4):4069-4073.
[18] DU J F,TIAN W,JI X P,et al.Strategic UAV-assisted game model for detection in covert communication[J].IEEE Transactions on Vehicular Technology,2023,72(6):7426-7438.
[19] ZHOU X B,YAN S H,HU J S,et al.Joint optimization of a UAV’s trajectory and transmit power for covert communications[J].IEEE Transactions on Signal Processing,2019,67(16):4276-4290.
[20] ZHANG R,CHEN X Y,LIU M Q,et al.UAV relay assisted cooperative jamming for covert communications over rician fading[J].IEEE Transactions on Vehicular Technology,2022,71(7):7936-7941.
[21] MOZAFFARI M,SAAD W,BENNIS M,et al.A tutorial on UAVs for wireless networks:Applications,challenges,and open problems[J].IEEE Communications Surveys & Tutorials,2019,21(3):2334-2360.
[22] DO D T,LE A T,MUMTAZ S.Secure performance analysis of RIS-aided wireless communication systems[EB/OL].[2024-09-18].https://arxiv.org/abs/2205.13654v1.
[23] LU X,HOSSAIN E,SHAFIQUE T,et al.Intelligent reflecting surface enabled covert communications in wireless networks[J].IEEE Network,2020,34(5):148-155.
[24] LIN S B,XU Y T,WANG H C,et al.Multi-antenna covert communication assisted by UAV-RIS with imperfect CSI[J].IEEE Transactions on Wireless Communications,2024,23(10):13841-13855.
[25] 刘超文,王丽平,党儒鸽,等.多UAV辅助反向散射边缘计算网络能耗优化方案[J].西安邮电大学学报,2024,29(1):20-31.LIU C W,WANG L P,DANG R G,et al.Power consumption optimization scheme for multi-UAV-assisted backscattering edge computing network[J].Journal of Xi’an University of Posts and Telecommunications,2024,29(1):20-31.(in Chinese)
[26] 余雪勇,邱礼翔,宋家宁,等.无人机辅助边缘计算中安全通信与能效优化策略[J].通信学报,2023,44(3):45-54.YU X Y,QIU L X,SONG J N,et al.Security communication and energy efficiency optimization strategy in UAV-aided edge computing[J].Journal on Communications,2023,44(3):45-54.(in Chinese)
基本信息:
DOI:10.13682/j.issn.2095-6533.2025.04.004
中图分类号:TN918;V279;V243.1
引用信息:
[1]戈艺萌,刘浩宇,万鹏武,等.有源可重构智能表面辅助抖动无人机空地安全通信方案[J].西安邮电大学学报,2025,30(04):29-38.DOI:10.13682/j.issn.2095-6533.2025.04.004.
基金信息:
陕西省教育厅科学研究计划项目(24JK0668)