| 98 | 0 | 991 |
| 下载次数 | 被引频次 | 阅读次数 |
针对物联网(Internet of Things, IoT)边缘计算(Mobile Edge Computing, MEC)网络中建筑物遮挡、信道质量差导致的能耗增大的问题,提出一种智能反射表面(Intelligent Reflecting Surface, IRS)辅助无人机(Unmanned Aerial Vehicle, UAV)反向散射边缘计算网络能效最大化方案。通过优化反向散射过程中用户的反射系数、UAV的传输功率、用户设备的计算资源、IRS的相移矩阵和UAV的轨迹实现系统能效最大化。针对强耦合非凸优化问题,采用基于Dinkelbach设计的交替迭代优化算法,利用拉格朗日对偶、连续凸近似(Successive Convex Approximation, SCA)及最大最小化算法迭代求解。最后,将所提方案与固定UAV轨迹和IRS相移方案及单独固定UAV轨迹方案进行对比,仿真结果表明,所提方案在不同参数下可有效降低系统能耗,降幅最高可达51.2%,能够更有效地优化资源分配并实现系统网络能效最大化。
Abstract:To address the increased energy consumption caused by building blockages and poor channel conditions in mobile edge computing(MEC) of Internet of Things(IoT) networks, an energy efficiency maximization framework for an intelligent reflecting surface(IRS)-assisted unmanned aerial vehicle(UAV) backscatter MEC network is proposed. It jointly optimizes the user reflection coefficients during backscatter communication, UAV transmit power, computational resource allocation at user devices, IRS phase shift matrix, and UAV trajectory to maximize system energy efficiency. For the strongly coupled and non-convex characteristics of the formulated optimization problem, an alternating iterative optimization algorithm based on Dinkelbach's method is developed. It adopts Lagrangian duality, successive convex approximation(SCA), and max-min optimization techniques to iteratively solve the problem. Finally, compared with benchmark schemes employing fixed UAV trajectories and IRS phase shifts or only fixed UAV trajectories, simulation results show that the proposed scheme can reduce system energy consumption by up to 51.2% under varying system parameters. It can effectively optimize the resource allocation and realize maximal energy efficiency for system network.
[1] 江雪,赵亮.无人机辅助移动边缘计算网络中轨迹设计和带宽分配策略[J].物联网学报,2023,7(4):123-131.JIANG X,ZHAO L.Trajectory design and bandwidth allocation strategy in UAV-assisted MEC network[J].Journal on Internet of Things,2023,7(4):123-131.(in Chinese)
[2] ABBAS N,ZHANG Y,TAHERKORDI A,et al.Mobile edge computing:A survey[J].IEEE Internet of Things Journal,2018,5(1):450-465.
[3] LANKA S,WIN T A,ESHAN S.A review on edge computing and 5G in IoT:Architecture & applications[C]//2021 5th International Conference on Electronics,Communication and Aerospace Technology (ICECA).Coimbatore:IEEE,2021:532-536.
[4] LU X,JIANG H,NIYATO D,et al.Wireless-powered device-to-device communications with ambient backscattering:Performance modeling and analysis[J].IEEE Transactions on Wireless Communications,2018,17(3):1528-1544.
[5] ELMOSSALLAMY M A,PAN M,JANTTI R,et al.Noncoherent backscatter communications over ambient OFDM signals[J].IEEE Transactions on Communications,2019,67(5):3597-3611.
[6] ZENG S H,ZHANG H L,DI B Y,et al.Reconfigurable intelligent surfaces in 6G:Reflective,transmissive,or both?[J].IEEE Communications Letters,2021,25(6):2063-2067.
[7] ZHANG L W,LI G X,CHEN J,et al.Joint transmit power and trajectory optimization for UAV covert communication assisted by artificial noise[C]//2023 International Conference on Ubiquitous Communication (Ucom).Xi’an:IEEE,2023:46-51.
[8] 刘伯阳,党儒鸽,王丽平,等.基于反向散射无人机辅助MEC网络能耗最小化方案[J].西安邮电大学学报,2024,29(6):1-10.LIU B Y,DANG R G,WANG L P,et al.Energy consumption minimization scheme for UAV-assisted MEC network based on backscatter[J].Journal of Xi’an University of Posts and Telecommunications,2024,29(6):1-10.(in Chinese)
[9] 付志远,施丽琴,叶迎晖,等.反向散射辅助的无线供能NOMA-MEC网络中的公平性优化[J].北京邮电大学学报,2023,46(2):71-77.FU Z Y,SHI L Q,YE Y H,et al.Fairness optimization in a backscatter assisted wirelessly powered NOMA-MEC network[J].Journal of Beijing University of Posts and Telecommunications,2023,46(2):71-77.(in Chinese)
[10] SHI L Q,YE Y H,CHU X L,et al.Computation bits maximization in a backscatter assisted wirelessly powered MEC network[J].IEEE Communications Letters,2021,25(2):528-532.
[11] WU Q Q,ZHANG R.Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J].IEEE Transactions on Wireless Communications,2019,18(11):5394-5409.
[12] XU S,DU Y N,LIU J J,et al.Intelligent reflecting surface based backscatter communication for data offloading[J].IEEE Transactions on Communications,2022,70(6):4211-4221.
[13] ARGARI S,TELLAMBURA C,HERATH S.Energy-efficient hybrid offloading for backscatter-assisted wirelessly powered MEC with reconfigurable intelligent surfaces[J].IEEE Transactions on Mobile Computing,2023,22(9):5262-5279.
[14] WANG J M,XU S,HAN S,et al.UAV-powered multi-user intelligent reflecting surface backscatter communication[J].IEEE Transactions on Vehicular Technology,2023,72(8):10251-10262.
[15] XU Y,ZHANG T K,ZOU Y X,et al.Reconfigurable intelligence surface aided UAV-MEC systems with NOMA[J].IEEE Communications Letters,2022,26(9):2121-2125.
[16] QIN X T,SONG Z Y,HOU T W,et al.Joint optimization of resource allocation,phase shift,and UAV trajectory for energy-efficient RIS-assisted UAV-enabled MEC systems[J].IEEE Transactions on Green Communications and Networking,2023,7(4):1778-1792.
[17] LIU B Y,ZHANG H R,YU F,et al.Energy efficient maximization for backscatter-assisted UAV-powered MEC with reconfigurable intelligent surface[C]//2023 International Conference on Ubiquitous Communication.Xi’an:IEEE,2023:121-126.
[18] 汪小帅,朱其新,朱永红.改进D*算法下的无人机三维路径规划[J].西安工程大学学报,2023,37(3):83-91.WANG X S,ZHU Q X,ZHU Y H.Three-dimensional path planning of unmanned aerial vehicle based on an improved D* algorithm[J].Journal of Xi’an Polytechnic University,2023,37(3):83-91.(in Chinese)
[19] SUN Y,BABU P,PALOMAR D P.Majorization-minimization algorithms in signal processing,communications,and machine learning[J].IEEE Transactions on Signal Processing,2017,65(3):794-816.
[20] LIU G H,HE G J.TDOA and FDOA joint estimation method for communication radiation sources based on generalized extended approximation method and semi-definite programming[C]//2023 IEEE 6th International Conference on Electronics and Communication Engineering.Xi’an:IEEE,2023:1-5.
[21] ZENG Y,ZHANG R.Energy-efficient UAV communication with trajectory optimization[J].IEEE Transactions on Wireless Communications,2017,16(6):3747-3760.
[22] MIETTINEN A P,NURMINEN J K.Energy efficiency of mobile clients in cloud computing[C]//2nd USENIX workshop on hot topics in cloud computing (HotCloud 10).[S.l]:ACM,2010:1-4.
[23] XU D F,SUN Y,NG D W K,et al.Multiuser MISO UAV communications in uncertain environments with no-fly zones:Robust trajectory and resource allocation design[J].IEEE Transactions on Communications,2020,68(5):3153-3172.
[24] ZENG Y,XU J,ZHANG R.Energy minimization for wireless communication with rotary-wing UAV[J].IEEE Transactions on Wireless Communications,2019,18(4):2329-2345.
[25] LUO Z Q,MA W K,SO A M C,et al.Semidefinite relaxation of quadratic optimization problems[J].IEEE Signal Processing Magazine,2010,27(3):20-34.
[26] YANG G,DAI R,LIANG Y C.Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization[J].IEEE Transactions on Wireless Communications,2021,20(2):926-941.
基本信息:
DOI:10.13682/j.issn.2095-6533.2025.04.002
中图分类号:TN929.5;V279
引用信息:
[1]刘伯阳,赵云,党儒鸽,等.IRS辅助无人机反向散射边缘计算网络能效最大化方案[J].西安邮电大学学报,2025,30(04):9-20.DOI:10.13682/j.issn.2095-6533.2025.04.002.
基金信息:
国家自然科学基金项目(61901366); 陕西省自然科学基础研究计划项目(2020JQ-851); 陕西省普通高校青年杰出人才支持计划项目