西安邮电大学计算机学院;西安邮电大学陕西省网络数据智能处理重点实验室;西安邮电大学西安市大数据与智能计算重点实验室;西安市红会医院放射科;
通过分析图像型全自动骨龄评测算法所依赖的医学基础理论,对比图像型全自动骨龄评测中必要的图像分割方法和特征预测模型。归纳总结基于深度学习的自动骨龄评测算法,包括各类深度神经网络模型、模型训练所使用的数据集和骨龄评测结果等。此外,介绍骨龄评测中使用的其他数据采集方法及图像型全自动骨龄评测的发展情况,分析常见的几种全自动骨龄评测软件及系统,并对目前图像型全自动骨龄评测中存在的问题进行讨论与展望。
297 | 1 | 8 |
下载次数 | 被引频次 | 阅读次数 |
[1] POULTON A S,BUI Q,MELZER E,et al.Stimulant medication effects on growth and bone age in children with attention-deficit/hyperactivity disorder:A prospective cohort study[J].Int Clin Psychopharmacol,2016,31(2):93-99.
[2] WU X X.Study on the difference of Guizhou area,the age of criminal responsibility of bone age and chronological age[J].Health for Everyone,2016(18):24-28.
[3] ZHU X,LUO D,UNIVERSITY B S.Comparison of different bone age assessment methods in youth table tennis athletes[J].Chinese Journal of Osteoporosis,2016,22(11):1430-1434.
[4] 潘晓英,王佳,刘妮,等.机器学习在医疗大数据中的应用[J].西安邮电大学学报,2020,25(1):25-37.PAN X Y,WANG J,LIU N,et al.Application of machine learning in large medical data[J].Journal of Xi'an University of Posts and Telecommunications,2020,25(1):25-37.(in Chinese)
[5] TODD T M.Atlas of skeletal maturation.Part:Hand[J].Journal of Anatomy,1937,9(4):66-70.
[6] ROCHE A F,WAINER H,THISSEN D.The RWT method for the prediction of adult stature[J].Pediatrics,1975,56(6):1026-1033.
[7] TANNER J M,WHITEHOUSE R H,HEALYM J R.A new system for estimating skeletal maturity from the hand and wrist,with standards derived from a study of 2,600 healthy British children[M].Paris:International Children's Centre,1962.
[8] EHRENBERG A,TANNER J M,WHITEHOUSE R H,et al.Assessment of skeletal maturity and prediction of adult height(TWII-Method)[J].Applied Statistics,1977,26(1):80.
[9] GOLDSTEIN H,CAMERON N,HEALY J M,et al.Assessment of skeletal maturity and predication of adult height(TW3 Method)[J].Government & Opposition,2001,36(1):27-47.
[10] 张绍岩.中国人手腕部骨龄标准:中华05及其应用[M].北京:科学出版社,2015:13-21.ZHANG S Y.The standards of skeletal age in hand and wrist for Chinese:China 05 and its aplications[M].Beijing:Science Press,2015:13-21.(in Chinese)
[11] 顾光宁,吴晓钟.中国人标准骨龄及应用[M].上海:上海医科大学出版社,1993:110-115.GU G N,WU X Z.The standards of skeletal age for Chinese and its application[M].Shanghai:Shanghai Medical University Press,1993:110-115.(in Chinese)
[12] 叶义言.中国儿童骨龄评分法[M].北京:人民卫生出版社,2005:1-3.YE Y Y.Method for assessing bone age of chinese children[M].Beijing:People's Medical Publishing House Co,Ltd,2005:1-3.(in Chinese)
[13] OTSU N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
[14] ALBUQUERQUE M P D,ESQUEF I A,MELLO A R G,et al.Image thresholding using Tsallis entropy[J].Pattern Recognition Letters,2004,25(9):1059-65.
[15] HALABI S S,PREVEDELLO L M,KALPATHY-CRAMER J,et al.The RSNA pediatric bone age machine learning challenge[J].Radiology,2018,290(2):498-503.
[16] SIMU S,LAL S.A study about evolutionary and non-evolutionary segmentation techniques on hand radiographs for bone age assessment[J].Biomedical Signal Processing and Control,2017,33:220-235.
[17] HARALICK R M.Statistical and structural approaches to texture[J].Proceedings of the IEEE,1979,67(5):786-804.
[18] CHAI H Y,WEE L K,SWEE T T,et al.GLCM based adaptive crossed reconstructed(ACR) k-mean clustering hand bone segmentation[C]//Proceedings of the 2nd WSEAS international conference on Plasma-fusion-nuclear.Stevens Point:WSEAS,2011:192-197.
[19] ELAZAB A,WANG C,JIA F,et al.Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy-means clustering[J].Computational and Mathematical Methods in Medicine,2015(5):485-495.
[20] HUANG F,YOU Q,YANG J.Hand bone extraction method research based on ASM[J].Computer Engineering & Applications,2016,52(3):164-168.
[21] KAUR A,MANN K S.Segmenting bone parts for bone age assessment using point distribution model and contour modelling[J].Journal of Physics:Conference Series.IOP Publishing,2017,933(1):012004.
[22] SIGIT R,HARSONO T,ISNANDA F D,et al.Hand-wrist bone assesment for automatic age identification[C]//Proceeding of the 2016 International Electronics Symposium(IES).Denpasar:IEEE,2016:54-59.
[23] CHOPRA A,RAWAT S,KUMAR P.Active contours,Gvf and balloon model[J].International Journal of Computational Engineering Research,2012,2(2):403-407.
[24] SIMU S,LAL S,FADTE K,et al.Fully automatic segmentation of phalanges from hand radiographs for bone age assessment[J].Computer Methods in Biomechanics and Bio,2019,7(1-2):62-90.
[25] ZHAO F,KONG L.A thresholding image segmentation algorithm based on multi-objective hybrid optimization[J].Journal of Xi'an University of Posts and Telecommunications,2019,24(5):15-25.
[26] HARTIGAN J A,WONG M A.Algorithm AS 136:A k-means clustering algorithm[J].Journal of the Royal Statistical Society Series C(Applied Statistics),1979,28(1):100-108.
[27] PAPPAS T N.An adaptive clustering algorithm for image segmentation[J].IEEE Transactions on Signal Processing,1992,40(4):901-14.
[28] GONG M,TIAN D,SU L,et al.An efficient bi-convex fuzzy variational image segmentation method[J].Information Sciences,2015,293:351-69.
[29] EBERHART R,KENNEDY J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science.Nagoya:IEEE,1995:39-43.
[30] TILLETT J,RAO T M,SAHIN F,et al.Darwinian particle swarm optimization[C]//Proceedings of the 2nd Indian International Conference on Artrficial Intelligence.Pune:DBLP,2005:1474-1487
[31] LI C,GORE J C,DAVATZIKOS C.Multiplicative intrinsic component optimization(MICO) for MRI bias field estimation and tissue segmentation[J].Magnetic Resonance Imaging,2014,32(7):913-23.
[32] TIAN J X,LIU G C,SHAN-SHAN G U,et al.Deep learning in medical image analysis and its challenges[J].Zidonghua Xuebao/Acta Automatica Sinica,2018,44(3):401-424.
[33] ZHAO C,HAN J,JIA Y,et al.Versatile framework for medical image processing and analysis with application to automatic bone age assessment[J].Journal of Electrical and Computer Engineering,2018,2018:1-13.
[34] SPAMPINATO C,PALAZZO S,GIORDANO D,et al.Deep learning for automated skeletal bone age assessment in X-ray images[J].Medical Image Analysis,2017,36:41-51.
[35] JADERBERG M,SIMONYAN K,ZISSERMAN A.Spatial transformer networks[J].Advances in Neural Information Processing Systems,2015,28:2017-2025.
[36] LEE H,TAJMIR S,LEE J,et al.Fully automated deep learning system for bone age assessment[J].Journal of Digital Imaging,2017,30(4):427-41.
[37] LEE J H,KIM K G.Applying deep learning in medical images:The case of bone age estimation[J].Healthcare Informatics Research,2018,24(1):86-92.
[38] MUTASA S,CHANG P D,RUZAL-SHAPIRO C,et al.MABAL:A novel deep-learning architecture for machine-assisted bone age labeling[J].Journal of Digital Imaging,2018,31(4):513-9.
[39] HAN J,JIA Y,ZHAO C,et al.Automatic bone age assessment combined with transfer learning and support vector regression[C]//Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education(ITME).Hangzhou:IEEE,2018:61-66.
[40] IGLOVIKOV V I,RAKHLIN A,KALININ A A,et al.Paediatric bone age assessment using deep convolutional neural networks[M].[S.l]:Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support,2018:300-308.
[41] TAJMIR S H,LEE H,SHAILAM R,et al.Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability[J].Skeletal Radiology,2019,48(2):275-83.
[42] REN X H,LI T T,YANG X J,et al.Regression convolutional neural network for automated pediatric bone age assessment from hand radiograph[J].IEEE Journal of Biomedical and Health Informatics,2019,23(5):2030-2038.
[43] HU T H,HUO Z,LIU T A,et al.Automated assessment for bone age of left wrist joint in uyghur teenagers by deep learning[J].Journal of Forensic Medicine,2018,34(1):27-32.
[44] MARK C A B.Machine Learning and the Future of Radiology:How we won the 2017 RSNA ML Challenge[Z].2017.
[45] FRANGI A F,NIESSEN W J,VINCKEN K L,et al.Multiscale vessel enhancement filtering[C]//Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention.Berlin:Springer,1998:130-137.
[46] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:2818-2826.
[47] TIELEMAN T,HINTON G.Divide the gradient by a running average of its recent magnitude.coursera:Neural networks for machine learning[EB/OL].[2020-12-15].https://www.oalib.com/references/20002313.
[48] HUANG G,LIU Z,VAN D M L,et al.Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:4700-4708.
[49] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
[50] HYUNG L J,GI K K.Applying deep learning in medical images:The case of bone age estimation[J].Healthcare Informatics Research,2018,24(1):86-92.
[51] JIA Y,SHELHAMER E,DONAHUE J,et al.Caffe:Convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia.New York:ACM,2014:675-678.
[52] RONNEBERGER O,FISCHER P,BROX T.U-net:Convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention.[S.l.]:Springer,2015:234-241.
[53] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-12-15].http://www.arxiv.org/pdf/1409.1556.pdf.
[54] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25:1097-1105.
[55] SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[EB/OL].[2020-12-15].http://export.arxiv.org/pdf/1312.6229.
[56] TANNER J M,DAN O,LINDGREN G,et al.Reliability and validity of computer-assisted estimates of tanner-whitehouse skeletal maturity(CASAS):Comparison with the manual method[J].Hormone Research,1994,42(6):288-94.
[57] GERTYCH A,ZHANG A,SAYRE J,et al.Bone age assessment of children using a digital hand atlas[J].Computerized Medical Imaging and Graphics,2007,31(5):322-31.
[58] THODBERG H H,KREIBORG S,JUUL A,et al.The BoneXpert method for automated determination of skeletal maturity[J].IEEE Transactions on Medical Imaging,2009,28(1):52-66.
[59] LIN F,QIN Z J,ZHU Z,et al.Applicability study of the automatic bone age assessment of BoneXpert software in children and adolescent of China[J].Chinese Journal of Applied Clinical Pediatrics,2014,29(23):1814-1817.
[60] ZHANG J,LIN F,DING X.Maturation disparity between hand-wrist bones in a Chinese sample of normal children:An analysis based on automatic boneXpert and manual greulich and pyle atlas assessment[J].Korean Journal of Radiology,2016,17(3):435-42.
[61] NEELIS E,OLIEMAN J,RIZOPOULOS D,et al.Growth,body composition,and micronutrient abnormalities during and after weaning off home parenteral nutrition[J].Journal of Pediatric Gastroenterology and Nutrition,2018,67(5):e95-e100.
[62] PINSKER J E,MSL C,CHILES D P,et al.Automated bone age analysis with lossy image files[J].Military Medicine,2017,182(9):e1769.
[63] SANCHEZ T V,SUN Y,WANG J.Bone age assessment by dual energy X-Ray absorptiometry[J].Journal of Clinical Densitometry,2018,21(1):23.
[64] WANG Y.From a quarter of an hour to seconds,China's first artificial intelligence bone age film reader has been put into use[Z].2017.
[65] RACHMIEL M,NAUGOLNI L,MAZOR-ARONOVITCH K,et al.Bone age assessments by quantitative ultrasound(SonicBone) and hand X-ray based methods are comparable[J].The Israel Medical Association journal:IMAJ,2017,19(9):533-538.
[66] TERADA Y,KONO S,TAMADA D,et al.Skeletal age assessment in children using an open compact MRI system[J].Magnetic Resonance in Medicine,2013,69(6):1697-702.
[67] TOMEI E,SARTORI A,NISSMAN D,et al.Value of MRI of the hand and the wrist in evaluation of bone age:preliminary results[J].Journal of Magnetic Resonance Imaging,2014,39(5):1198-1205.
[68] STERN D,EBNER T,BISCHOF H,et al.Fully automatic bone age estimation from left hand MR images[C]// Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.[S.l.]:Springer,2014:220-227.
[69] STERN D,URSCHLER M.From individual hand bone age estimates to fully automated age estimation via learning-based information fusion[C]//Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging(ISBI).Prague:IEEE,2016:150-154.
[70] SCHMELING A,GESERICK G,REISINGER W,et al.Age estimation[J].Forensic Science International,2007,165(2-3):178-81.
[71] UFUK F,AGLADIOGLU K,KARABULUT N.CT evaluation of medial clavicular epiphysis as a method of bone age determination in adolescents and young adults[J].Diagnostic and Interventional Radiology,2016,22(3):241.
[72] ZHA L,QIN C E.Identification of skeletal age using the ossification staging of medial clavicle epiphysis[J].Chinese Journal of Tissue Engineering Research,2018,22(35):5674-5680.
[73] BARTOLINI V,PINCHI V,GUALCO B,et al.The iliac crest in forensic age estimation:evaluation of three methods in pelvis X-rays[J].International Journal of Legal Medicine,2018,132(1):279-88.
[74] LI Y,HUANG Z,DONG X,et al.Forensic age estimation for pelvic X-ray images using deep learning[J].European Radiology,2019,29(5):2322-2329.
基本信息:
DOI:10.13682/j.issn.2095-6533.2021.04.010
中图分类号:TP391.41;TP18;R318
引用信息:
[1]贾阳,陈伟光,王海娟等.图像型全自动骨龄评测算法及应用研究进展[J].西安邮电大学学报,2021,26(04):65-78.DOI:10.13682/j.issn.2095-6533.2021.04.010.
基金信息:
陕西省重点研发计划项目(2019GY-021); 陕西省教育厅自然科学研究计划项目(18JK0722)