38 | 0 | 92 |
下载次数 | 被引频次 | 阅读次数 |
提出了一种研究双高斯波束对手性粒子辐射力的方法。假设光波束以任意方向传播,利用坐标旋转定理在粒子坐标系中以球矢量波函数对双高斯波束进行扩展;通过对入射场的叠加,得到双高斯波束总入射场的展开系数;根据广义洛伦兹-米氏理论和麦克斯韦应力张量理论,推导出作用在手性粒子上辐射力的解析表达式。仿真结果表明:当手性粒子退化为各向同性介质球时,辐射力仿真结果与相关经典文献吻合;双高斯波束的束腰宽度变化对其捕获手性粒子的能力影响不大;随着双高斯波束偏振角的减小,双高斯波对手性粒子的捕获能力会增强;线性偏振的双高斯波束照射具有大手性参数的球体时,产生的辐射力将变小,使得捕获变得更加困难;右旋圆极化双高斯波束对手性参数为负的手性粒子捕获的概率更大;所提出的双高斯波束较单高斯波束更容易捕获大尺寸的手性粒子;双高斯波束的稳定俘获性能对手性粒子的手性参数十分敏感;采用合适的圆偏振态的双高斯波束可能更容易实现对手性粒子的轴向捕获。
Abstract:A method for investigating the radiation force on chiral particles by dual Gaussian beams is proposed. Assuming that the beams propagate in arbitrary directions, the coordinate rotation theorem is employed to expand the beams into spherical vector wave functions in the particle's coordinate system. By superimposing the vector fields, the expansion coefficients of the total incident field are obtained. Analytical expressions for the radiation force on a chiral sphere are derived based on the generalized Lorentz Mie theory and the Maxwell stress tensor theory. Simulation results show that: When the degenerate chiral sphere is replaced by an isotropic medium sphere, the simulation results of the radiation force agree with the relevant classical literature. The capture ability of dual Gaussian beams irradiating chiral particles is not significantly affected by changes in the waist width of the beams. As the polarization angle of the dual Gaussian beam decreases, the capturing ability of the beam towards the particles increases. When linearly polarized Gaussian standing waves irradiate spheres with a large chiral parameter, the resulting radiation force decreases, making capture more difficult. The probability of capturing chiral medium spheres with a negative chiral parameter by right-handed circularly polarized Gaussian standing waves is greater. The proposed dual Gaussian standing beam trap is easier to capture or confine large sized chiral spherical particles compared to a single Gaussian beam. The stable capture of the standing wave trap is very sensitive to the chiral parameter, and using an appropriate circularly polarized state standing wave may facilitate axial capture of chiral spheres more easily.
[1] GUO H L,LI Z Y.Optical tweezers technique and its applications[J].Science China (Physics,Mechanics & Astronomy),2013,56(12):2351-2360.
[2] ASHKIN A.Acceleration and trapping of particles by radiation pressure[J].Physical Review Letters,1970,24(4):156-159.
[3] MOLLOY J E,DHOLAKIA K,PADGETT M J.Optical tweezers in a new light[J].Journal of Modern Optics,2003,53(3):357-364.
[4] 祁建霞.低能粒子散射特性的量子力学研究[J].西安邮电大学学报,2009,14(3):120-122.QI J X.Using quantum mechanics to study the scattering character of low-energy particle[J].Journal of Xi’an University of Posts and Telecommunications,2009,14(3):120-122.(in Chinese)
[5] TANG Q,LIU P,TANG S.Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources[J].Chinese Physics B,2022,31(4):1-12.
[6] NAHMIAS Y K,ODDE D J.Analysis of radiation forces in laser trapping and laser-guided direct writing applications[J].IEEE Journal of Quantum Electronics,2002,38(2):131-141.
[7] MANSURIPUR M,ZAKHARIAN A R,WRIGHT E M.Electromagnetic-force distribution inside matter[J].Physical Review A,2013,88(2):1-13.
[8] MAHEU B,GREHAN G,GOUESBET G.Generalized Lorenz-Mie theory:First exact values and comparisons with the localized approximation[J].Applied Optics,1987,26(1):23-25.
[9] BARTON J P,ALEXANDEN D R,SCHAUB S A.Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam[J].Japanese Journal of Applied Physics,1989,66(10):4594-4602.
[10] YANG A H J,MOORE S D,SCHMIDT B S,et al.Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides[J].Nature,2009,457(7225):71-75.
[11] KISELEV A D,PLUTENKO D O.Optical trapping by Laguerre-Gaussian beams:Far-field matching,equilibria,and dynamics[J].Physical Review Applied,2016,94(1):1-15.
[12] ZANG Y C,LIN W J,SU C,et al.Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam[J].Chinese Physics B,2021,30(4):1-14.
[13] MAHALOV A,MOUSTAOUI M.Characterization of atmospheric optical turbulence for laser propagation[J].Laser & Photonics Reviews,2010,4(1):144-159.
[14] HAN G X,HAN Y P.Scattering of bi-sphere arbitrarily illuminated by a single beam and a dual beam[J].Acta Physica Sinica,2010,59(4):2434-2442.
[15] ASHKIN A,DZIEDZIC J M.Optical levitation by radiation pressure[J].Applied Physics Letters,1971,19(8):283-285.
[16] ZEMANEK P,JONAS A,SRAMEK L,et al.Optical trapping of Rayleigh particles using a Gaussian standing wave[J].Optics Communications,1998,151(4-6):273-285.
[17] GAUTHIER R C,FRANGIOUDAKIS A.Optical levitation particle delivery system for a dual beam fiber optic trap[J].Applied Optics,2000,39(1):26-33.
[18] REN K F,GREHA G,GOUERBET G.Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory,and associated resonance effects[J].Optics Communications,1994,108(4-6):343-354.
[19] GOUERBET G,LOCK J A.Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory.II.Off-axis beams[J].The Journal of the Optical Society of America A,1994,11(9):2516-2525.
[20] LI Z J,LI S,LI H Y,et al.Analysis of radiation force on a uniaxial anisotropic sphere by dual counter-propagating Gaussian beams[J].The Journal of The Optical Society of America A,2021,38(5):616-627.
[21] STEPHEN MASON,LIAO D Z.Chirality of biomolecules[J].World Science,1987(7):34-39.
[22] KORDI M,MIRSALEHI M M.Optical chiral metamaterial based on the resonant behaviour of nanodiscs[J].Journal of Modern Optics,2016,63(15):1473-1479.
[23] LAKHTAKIA A,VARADAN V K,VARADAN V V.Scattering and absorption characteristics of lossy dielectric,chiral,nonspherical objects[J].Applied Optics,1985,24(23):4146-4154.
[24] WORASAWATE D,MAUTZ J R,ARVAS E.Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body[J].IEEE Transactions on Antennas and Propagation,2003,51(5):1077-1084.
[25] DEMIR V,ELSHERBENI A Z,ARVES E.FDTD formulation for dispersive chiral media using the Z transform method[J].IEEE Transactions on Antennas and Propagation,2005,53(10):3374-3384.
[26] KUZU L,DEMIR V,ELSHERBENIl A Z,et al.Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method[J].Progress in Electromagnetics Research,2007,67:1-24.
[27] CHEN H,WANG N,LU W,et al.Tailoring azimuthal optical force on lossy chiral particles in Bessel beams[J].Physical Review Applied,2014,90(4):1-11.
[28] DU J,YUEN C H,LI X,et al.Tailoring optical gradient force and optical scattering and absorption force[J].Scientific Reports,2017,7(1):1-7.
[29] ZHENG H,YU X,LU W,et al.GCforce:Decomposition of optical force into gradient and scattering parts[J].Computer Physics Communications,2019,237:188-198.
[30] SHANG Q C,WU Z S,QU T,et al.Analysis of the radiation force and torque exerted on a chiral sphere by a Gaussian beam[J].Optics Express,2013,21(7):8677-8688.
[31] KUO C F,CHU S C.Launching of surface plasmon polaritons with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams[J].Optics Express,2017,25(9):10456-10463.
[32] KERKER M.Movement of small particles by light:As small particles scatter and absorb incident light,the force of momentum transferred from the rays causes them to move[J].American Scientist,1974,62(1):92-98.
[33] EDMONDS A R.Angular momentum in quantum mechanics[M].Princeton:Princeton University Press,1996.
[34] GENG Y L,WU X B,LI L W,et al.Mie scattering by a uniaxial anisotropic sphere[J].Physical R Physical Review E,2004,70(5):1-8.
[35] GOUESBET G,GREHAN G,MAHEU B.Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods[J].Applied Optics,1988,27(23):4874-4883.
[36] BROWN A J.Equivalence relations and symmetries for laboratory,LIDAR,and planetary Müeller matrix scattering geometries[J].Journal of the Optical Society of America A-optics Image Science and Vision,2014,31(12):2789-2794.
[37] LINDELL I V,SIHVOLA A H,TRETYAKOV S A,VIITANEN A J.Electromagnetic waves in chiral and bi-isotropic media[M].Boston:Artech House,1994.
[38] BOHREN C F.Light scattering by an optically active sphere[J].The Journal of Physical Chemistry Letters,1974,29(3):458-462.
[39] WU Z S,SHANG Q C,LI Z J.Calculation of electromagnetic scattering by a large chiral sphere[J].Applied Optics,2012,51(27):6661-6668.
[40] LI Z J,WU Z S,SHANG Q C.Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam[J].Optics Express,2011,19(17):16044-16057.
[41] ADEN A L,KERKER M.Scattering of electromagnetic waves from two concentric spheres[J].Journal of Applied Physics,1951,22(10):1242-1246.
[42] ZEMANEK P,JONAS A,JAKL P,et al.Theoretical comparison of optical traps created by standing wave and single beam[J].Optics Communications,2003,220(4-6):401-412.
基本信息:
DOI:10.13682/j.issn.2095-6533.2024.03.005
中图分类号:O43
引用信息:
[1]白靖,刘轩,葛城显等.双高斯波束对手性粒子的辐射力特性[J].西安邮电大学学报,2024,29(03):44-57.DOI:10.13682/j.issn.2095-6533.2024.03.005.
基金信息:
国家自然科学基金项目(62001377,62101445,61571355,61601355,61308025); 陕西省自然科学基金项目(2023-JC-QN-0657,2023-JC-QN-0774,2022KJXX-95,2020JQ-843); 西安市科协青年人才托举计划项目(959202313013)