西安邮电大学通信与信息工程学院;陕西省信息通信网络及安全重点实验室;
针对多径环境下直接定位(Direct Position Determination, DPD)算法性能下降的问题,提出一种多径环境下基于检索信号子空间的直接定位算法。该算法采用重构噪声子空间的多重信号分类算法在提取信号子空间与噪声子空间的同时降低阵列信号相关性,并基于噪声子空间估计信号到达角度(Angle of Arrival, AOA)解算多个辐射源位置。为降低所提算法的复杂度,等间隔划分目标区域求得多个辐射源权重位置,再联立信号子空间与权重位置检索信号子空间中视距(Line-of-Sight, LOS)分量最大的阵列元素,采用稀疏算法识别目标辐射源位置。仿真结果表明,所提算法明显优于传统的两步定位法和重构噪声子空间的多重信号分类(Reconstructing Noise Subspaces Multiple Signal Classification,IRNSMUSIC)算法,能够提升多径环境下直接定位算法的定位精度。
46 | 0 | 48 |
下载次数 | 被引频次 | 阅读次数 |
[2] 王文庆,朱梁,吴益凡.一种基于UWB的CTK-IDS联合定位算法[J].西安邮电大学学报,2023,28(4):9-17.WANG W Q,ZHU L,WU Y F.A CTK-IDS joint positioning algorithm based on UWB[J].Journal of Xi’an University of Posts and Telecommunications,2023,28(4):9-17.(in Chinese).
[3] HO T J,WU M H,LIN W C.Mobile localization in random NLOS settings using improved particle filtering[C]//2021 13th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT).Brno:IEEE,2021:44-49.
[4] WU H F,LIANG L N,MEI X J,et al.A convex optimization approach for NLOS error mitigation in TOA-based localization[J].IEEE Signal Processing Letters,2022,29:677-681.
[5] LI Z,TIAN Z S ,WANG Z C,et al.Multipath-assisted indoor localization using a single receiver[J].IEEE Sensors Journal,2021,21(1):692-705.
[6] STILL L,OISPUU M,KOCH W.Accuracy study on target localization using acoustic bearing measurements including urban reflections[C]//2022 25th International Conference on Information Fusion (FUSION).Link?ping:IEEE,2022:1-8.
[7] 黄庆东,张典,李佳欣,等.基于IMM-KF的混合场景非视距定位算法[J].西安邮电大学学报,2024,29(3):12-19.HUANG Q D,ZHANG D,LI J X,et al.Hybrid non-line-of-sight localization algorithm based on IMM-KF[J].Journal of Xi’an University of Posts and Telecommunications,2024,29(3):12-19.(in Chinese).
[8] WEISS A J.Direct position determination of narrowband radio transmitters[J].IEEE Signal Processing Letters,2004,11(5):513-516.
[9] AMAR A,WEISS A J.Direct position determination of multiple radio signals[J].EURASIP Journal on Advances in Signal Processing,2005(1):1-13.
[10] 尹洁昕,王鼎,吴瑛,等.直达与非直达环境中的多目标解耦直接定位方法[J].航空学报,2018,39(2):190-203.YIN J X,WANG D,WU Y,et al.A decoupled direct position determination algorithm for multiple targets in mixed LOS/NLOS environments[J].Acta Aeronautica et Astronautica Sinica,2018,39(2):190-203.(in Chinese)
[11] QIN T Z,LI L,LU Z Y,et al.A ML-based direct localization method for multiple sources with moving arrays[C]//2018 IEEE 18th International Conference on Communication Technology (ICCT).Chongqing:IEEE,2018:1073-1076.
[12] QIN T Z,LU Z Y,BA B,et al.A decoupled direct positioning algorithm for strictly noncircular sources based on Doppler shifts and angle of arrival[J].IEEE Access,2018,6:34449-34461.
[13] PALANIVELU D P,OISPUU M,KOCH W.Direct position determination using direct signals and first-order reflections by exploiting the multipath environment[C]//2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).Bedford:IEEE,2022:1-6.
[14] PALANIVELU D P,OISPUU M,KOCH W.Experimental results on direct position determination by exploiting the multipath environment[C]//2022 Sensor Data Fusion:Trends,Solutions,Applications (SDF).Bonn:IEEE,2022:1-6.
[15] 张石,许方晗,佘黎煌,等.基于重构噪声子空间的相干信号DOA估计[J].东北大学学报(自然科学版),2021,42(12):1696-1700.ZHANG S,XU F H,SHE L H,et al.DOA estimation of coherent signals based on reconstructed noise subspace[J].Journal of Northeastern University (Natural Science),2021,42(12):1696-1700.(in Chinese)
[16] HAO K G,WAN Q.Sparse Bayesian inference-based direct off-grid position determination in multipath environments[J].IEEE Wireless Communications Letters,2021,10(6):1148-1152.
[17] 曹仲康,李建峰,李潘,等.参数字典动态更新的SOMP离网格直接定位方法[J].信号处理,2023,39(5):807-816.CAO Z K,LI J F,LI P,et al.Dynamic grid direct position determination algorithm based on SOMP[J].Journal of Signal Processing,2023,39(5):807-816.(in Chinese)
基本信息:
DOI:10.13682/j.issn.2095-6533.2024.06.002
中图分类号:TN911.7
引用信息:
[1]万鹏武,李文杰,彭康等.多径环境下基于检索信号子空间的直接定位算法[J].西安邮电大学学报,2024,29(06):11-19.DOI:10.13682/j.issn.2095-6533.2024.06.002.
基金信息:
国家自然科学基金项目(62101441); 西安邮电大学研究生创新基金一般项目(CXJJYL2021073)