nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, v.29 12-19
基于IMM-KF的混合场景非视距定位算法
基金项目(Foundation): 国家自然科学基金项目(62101442)
邮箱(Email):
DOI: 10.13682/j.issn.2095-6533.2024.03.002
摘要:

为了降低视距(Line of Sight, LOS)和非视距(Non-Line of Sight, NLOS)混合场景下无线定位的误差,提出一种基于交互式多模型-卡尔曼滤波(Interactive Multiple Model-Kalman Filter, IMM-KF)的残差选择NLOS定位算法。构建适用于LOS的多边定位模型和适用于NLOS的残差选择3边定位模型,通过似然概率加权估计两个模型的融合位置。结合卡尔曼滤波进行误差估计确定残差,得到最优的位置估计值,从而降低计算复杂度和由计算不准确导致的模型失配问题。仿真结果表明,所提算法在混合场景中NLOS噪声服从高斯分布、指数分布及均匀分布下,定位精度优于其他对比算法,能有效降低NLOS误差。

Abstract:

To reduce the error in wireless positioning in mixed line of sight(LOS) and non-line of sight(NLOS) scenarios, a residual selection NLOS positioning algorithm based on the interactive multiple model-Kalman filter(IMM-KF) is proposed. This approach constructs a multi-lateration positioning model suitable for LOS and a residual selection trilateration positioning model suitable for NLOS. The fusion position of these two models is estimated through likelihood probability weighting, and the residuals are determined by the Kalman filtering for error estimation. The optimal position estimate is obtained, reducing both computational complexity and model mismatch issues caused by inaccurate calculations. Simulation results demonstrate that the proposed algorithm effectively reduces the NLOS errors under noises with Gaussian distribution, exponential distribution, and uniform distribution, and achieves higher positioning accuracy compared to the other algorithm.

参考文献

[1] WU P,CHEN J,GUO S,et al.NLOS positioning for building layout and target based on association and hypothesis method[J].IEEE Transactions on Geoscience and Remote Sensing,2023,61:1-13.

[2] 齐小刚,陈谌,李芷楠.室内定位中非视距的识别和抑制算法研究综述[J].控制与决策,2022,37(8):1921-1933.QI X G,CHEN C,LI Z N.A review of non-line-of-sight identification and mitigation algorithms for indoor localization[J].Control and Decision,2022,37(8):1921-1933.(in Chinese)

[3] WU C,HOU H,WANG W,et al.TDOA based indoor positioning with NLOS identification by machine learning[C]//Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP).Hangzhou:IEEE,2018:1-6.

[4] CUI Z,GAO Y,HU J,et al.LOS/NLOS identification for indoor UWB positioning based on Morlet wavelet transform and convolutional neural networks[J].IEEE Communications Letters,2020,25(3):879-882.

[5] 张宝军,田奇,王珩,等.基于CNN和在线学习的UWB室内定位算法[J].传感技术学报,2020,33(4):511-516.ZHANG B J,TIAN Q,WANG H,et al.UWB indoor positioning algorithm based on CNN and online learning[J].Chinese Journal of Sensors and Actuators,2020,33(4):511-516.(in Chinese)

[6] TOMIC S,BEKO M.A bisection-based approach for exact target localization in NLOS environments[J].Signal Processing,2018,143:328-335.

[7] NIU Q,SHI W,XU Y,et al.High-accuracy NLOS identification based on random forest and high-precision positioning on 60 GHz millimeter wave[J].China Communications,2023,20(12):96-110.

[8] 孙伟,孙沛伦.一种基于机器学习分类器的UWB异常信号识别方法[J].测绘科学,2023,48(5):1-8.SUN W,SUN P L.UWB abnormal signal recognition based on machine learning classifier[J].Science of Surreying and Mapping,2023,48(5):1-8.(in Chinese)

[9] JIN D,YIN F,ZOUBIR A M,et al.Exploiting sparsity of ranging biases for NLOS mitigation[J].IEEE Transactions on Signal Processing,2021,69:3782-3795.

[10] 尹烨佳,华惊宇,李枫,等.非视距环境中的无线网络残差加权定位算法[J].传感技术学报,2019,32(5):749-755.YIN Y J,HUA J Y,LI F,et al.Residual weighted based wireless localization algorithmin NLOS environments[J].Chinese Journal of Sensors and Actuators,2019,32(5):749-755.(in Chinese)

[11] 王平波,刘杨.基于改进自适应IMM-UKF算法的水下目标跟踪[J].电子与信息学报,2022,44(6):1999-2005.WANG P B,LIU Y.Underwater target tracking algorithm based on improved adaptive IMM-UKF[J].Journal of Electronics & Information Technology,2022,44(6):1999-2005.(in Chinese)

[12] LIAO J F,CHEN B S.Robust mobile location estimator with NLOS mitigation using interacting multiple model algorithm[J].IEEE Transactions on Ireless Communications,2006,5(11):3002-3006.

[13] 张云洲,付文艳,项姝,等.室内环境下基于IMM-EKF算法的移动目标定位[J].计算机研究与发展,2014,51(11):2408-2415.ZHANG Y Z,FU W Y,XIANG S,et al.IMM-EKF algorithm based indoor moving target localization[J].Journal of Computer Research and Development,2014,51(11):2408-2415.(in Chinese)

[14] 于晓升,王莹,孟亚男,等.基于IMM-IKF的无线传感器网络非视距节点定位方法[J].控制与决策,2018,33(6):1069-1074.YU X S,WANG Y,MENG Y N,et al.Non-line of sight node localization method based on IMM-IKF for wireless sensor networks[J].Control and Decision,2018,33(6):1069-1074.(in Chinese)

[15] 万鹏武,李文杰,彭康.混合信道下基于到达时间的快速直接定位算法[J].西安邮电大学学报,2024,29(2):20-26.WAN P W,LI W J,PENG K.Fast direct position determination algorithm based on arrival time in hybrid channels[J].Journal of Xi’an University of Posts and Telecommunications,2024,29(2):20-26.(in Chinese)

[16] 亢红波,段育松,杨亮.基于UWB/INS紧耦合的室内定位系统[J].西安邮电大学学报,2023,28(6):12-20.KANG H B,DUAN Y S,YANG L.Indoor positioning system based on tight coupling of UWB/INS[J].Journal of Xi’an University of Posts and Telecommunications,2023,28(6):12-20.(in Chinese)

[17] CHENG S,WANG W,MA Y,et al.Improved interactive multiple model kalman filter design for tracking complex moving vehicles under concealed conditions[C]//Proceedings of the 2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC).Beijing:IEEE,2022:1-3.

基本信息:

DOI:10.13682/j.issn.2095-6533.2024.03.002

中图分类号:TN713;TP18

引用信息:

[1]黄庆东,张典,李佳欣等.基于IMM-KF的混合场景非视距定位算法[J].西安邮电大学学报,2024,29(03):12-19.DOI:10.13682/j.issn.2095-6533.2024.03.002.

基金信息:

国家自然科学基金项目(62101442)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索