nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, v.29 58-64
基于正规方程的L2,1正则核极限学习机
基金项目(Foundation): 国家自然科学基金项目(51875457); 陕西省自然科学基金项目(2022JQ-636); 陕西省重点研发计划项目(2022GY-050)
邮箱(Email):
DOI: 10.13682/j.issn.2095-6533.2024.03.006
摘要:

为了降低核极限学习机的时间复杂度,提出一种基于正规方程的L2,1正则核极限学习机。将L2,1范数引入核极限学习机的目标函数中,利用正规方程法求解L2,1正则核极限学习机的最优输出权值,从而避免模型的过拟合问题,同时提高分类性能。实验结果表明,与传统的核极限学习机相比,所提核极限学习机能够有效减少学习过程中的大量矩阵运算,具有更快的学习速度和更高的分类准确率。

Abstract:

In order to reduce the time complexity of the kernel extreme learning machine, the L2,1-regularized kernel extreme learning machine based on the normal equation is proposed. The L2,1-norm is introduced into the objective function of the kernel extreme learning machine, and the optimal output weights of the L2,1-regularized kernel extreme learning machine are solved by using the normal equation, which effectively avoids the overfitting problem of the model, as well as improves the classification performance. Experiment results indicate that the proposed kernel extreme learning machine can effectively decrease a large number of matrix operations in the learning process, and has faster learning speed as well as higher classification accuracy than the conventional kernel extreme learning machine.

参考文献

[1] HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:Theory and applications[J].Neurocomputing,2006,70(1/3):489-501.

[2] HOPKINS E.Machine learning tools,algorithms,and techniques[J].Journal of Self-Governance and Management Economics,2022,10(1):43-55.

[3] MENG H,HUO R,GUO Q Y,et al.Machine learning-based stochastic task offloading algorithm in mobile-edge computing[J].Journal of Beijing University of Posts and Telecommunications,2019,42(2):25-30.

[4] WANG J,LU S,WANG S H,et al.A review on extreme learning machine[J].Multimedia Tools and Applications,2022,81(29):41611-41660.

[5] REN L R,GAO Y L,LIU J X,et al.L2,1-extreme learning machine:An efficient robust classifier for tumor classification[J].Computational Biology and Chemistry,2020,89:107368.

[6] SHANKAR K,LAKSHMANAPRABU S K,GUPTA D,et al.Optimal feature-based multi-kernel SVM approach for thyroid disease classification[J].The Journal of Supercomputing,2020,76(28):1-16.

[7] 卢光跃,张宏建,闫真光,等.基于特征选择和SVM的电信客户离网预测[J].西安邮电大学学报,2019,24(2):21-25.LU G Y,ZHANG H J,YAN Z G.Prediction on customer leaving the telecom network based on feature selection and SVM[J].Journal of Xi’an University of Posts and Telecommunications,2019,24(2):21-25.(in Chinese)

[8] 刘颖,葛瑜祥.基于CNN、SVM和迁移学习的轮胎花纹分类[J].西安邮电大学学报,2018,23(3):38-44.LIU Y,GE Y X.Tire tread pattern image classification based on SVM,CNN and transfer learning[J].Journal of Xi’an University of Posts and Telecommunications,2018,23(3):38-44.(in Chinese)

[9] HUANG G B,ZHOU H,DING X,et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems Man and Cybernetics Part B,2011,42(2):513-529.

[10] DENG W Y,ZHENG Q H,CHEN L.Large scale kernel extreme learning machine[J].Chinese Journal of Computers,2014,37(11):2235-2246.

[11] TONG R,LI P,LANG X,et al.A novel adaptive weighted kernel extreme learning machine algorithm and its application in wind turbine blade icing fault detection[J].Measurement,2021,185:1-20.

[12] 刘亚琦.核极限学习机的改进及其在肿瘤识别中的应用[D].湘潭:湘潭大学,2019.LIU Y Q.Improvement of kernel extreme learning machine and its application in tumor identification[D].Xiangtan:Xiang tan University,2019.(in Chinese)

[13] DENG W,ZHENG Q,CHEN L.Regularized extreme learning machine[C]//Proceedings of the Computational Intelligence and Data Mining.Nashville:IEEE,2009:389-395.

[14] ZHOU S H,LIU X W,LIU Q,et al.Random fourier extreme learning machine with L2,1-norm regularization[J].Neurocomputing,2016,174(6):143-153.

[15] LANGE K.Karush-Kuhn-Tucker theory[M].New York:Springer New York,2012.

[16] SONG K,JUNG Y,KIM D,et al.Implicit kernel attention[C]//Proceedings of the AAI Conference on Artificial In telligence.United States:AAI,2021:9713-9721.

[17] DING C,ZHOU D,HE X,et al.Rotational invariant L1-norm principal component analysis for robust subspace factorization[C]//Proceedings of the 23rd international conference on Machine learning.New York:ACM,2006:281-288.

[18] 支晓斌,毕龙涛.基于l2,p-范数回归的判别子空间聚类算法[J].西安邮电大学学报,2020,25(3):77-81.ZHI X B,BI L T.Discriminant subspace clustering algorithm based on l2,p-norm regression[J].Journal of Xi’an University of Posts and Telecommunications,2020,25(3):77-81.(in Chinese)

[19] NEILL W T.The determinantal method of solving normal equations[J].Empire Survey Review,1940,5(36):336-344.

[20] BACHE K,LICHMAN M.UCI machine learning repository[EB/OL].[2023-11-05].http://archive.ics.uci.deu/ml/index.php.

[21] LI R,WANG X,LEI L,et al.L2,1-norm based loss function and regularization extreme learning machine[J].IEEE Access,2018,7:6575-6586.

[22] YACOUBY R,AXMAN D.Probabilistic extension of precision,recall,and F1 score for more thorough evaluation of classification models[C]//Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems.[S.l.]:Association for Computational Linguistics,2020:79-91.

基本信息:

DOI:10.13682/j.issn.2095-6533.2024.03.006

中图分类号:TP18

引用信息:

[1]吴青,魏瑶,马甜露等.基于正规方程的L_(2,1)正则核极限学习机[J].西安邮电大学学报,2024,29(03):58-64.DOI:10.13682/j.issn.2095-6533.2024.03.006.

基金信息:

国家自然科学基金项目(51875457); 陕西省自然科学基金项目(2022JQ-636); 陕西省重点研发计划项目(2022GY-050)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索